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In the present paper a general criticism of kinetic equations for vehicular traffic 
is given. The necessity of introducing an Enskog-type correction into these 
equations is shown. An Enskog-like kinetic traffic flow equation is presented 
and fluid dynamic equations are derived. This derivation yields new coefficients 
for the standard fluid dynamic equations of vehicular traffic. Numerical simula- 
tions for inhomogeneous traffic flow situations are shown together with a com- 
parison between kinetic and fluid dynamic models. 
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dynamic models; Payne equation; simulation of inhomogeneous traffic flow. 

1. I N T R O D U C T I O N  

Traditionally there have been three types of approaches to the modeling of 
traffic flow phenomena. The first and most basic one concerns microscopic 
or follow-the-leader models, modeling the actual response of single cars to 
their predecessor (see, e.g., refs. 1-3). Macroscopic models based on fluid 
dynamic equations have been proposed by a large number of authors (see, 
e.g., refs. 4-8). However, some of these models have been a subject of con- 
siderable controversy concerning their validity and applicability to traffic 
flow. Kinetic or Boltzmann-like models may present an intermediate step 
between the above two types of models. On the one hand they can be 
derived fro.m microscopic considerations. On the other hand, fluid dynamic 
models can be derived from kinetic traffic models, as has been shown, e.g., 
in refs. 9-12. The first kinetic traffic models were published by Prigogine 
and Andrews, t'3~ who introduced a Boltzmann-like term to account for 
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the slowing-down interactions (see Prigogine and Herman ~9J for a review). 
However, they and most of their successors (see, e.g., refs. 14, 11, and 10) 
treated the acceleration of the cars by means of a heuristic relaxation term. 
Only recently Nelson ~5~ succeeded in obtaining reasonable kinetic equa- 
tions by using a kinetic description also for acceleration. In ref. 16 a new 
model based on Nelson's approach is described and numerically investigated 
for space-homogeneous traffic flow situations. For a survey concentrating 
on kinetic models see ref. 17. 

In this paper we show that standard kinetic models are not able to 
deal with inhomogeneous traffic flow situations. Based on the model in ref. 
16 we introduce an Enskog-type correction term into the kinetic equation. 
This yields a model which is able to describe correctly inhomogeneous traf- 
fic flow patterns. Moreover, we derive from the kinetic model a new fluid 
dynamic traffic flow equation by considerations well known from Enskog's 
theory of a dense gas. In particular, the coefficients in these fluid dynamic 
equations, such as the traffic pressure, the anticipation term, and the 
relaxation time, are derived in this way from the kinetic model. 

Up to now simulations of inhomogeneous real-life traffic flow situa- 
tions have only been done using microscopic and fluid dynamic models. 
The main advantage of fluid dynamic models is the small computation time 
necessary for such a simulation. Here one should mention a special type of 
microscopic model, the cellular automaton models with simulation times 
that are similar to those of fluid dynamic models (see, for example, refs. 18 
and 19). The present paper contains numerical simulations of inhomog- 
eneous traffic situations for the kinetic and the derived fluid dynamic equa- 
tions. Concerning the computation times for the kinetic equation, it should 
be noted that kinetic models contain more variables than fluid dynamic 
models and fewer variables than microscopic ones. Therefore, one expects 
that computation times for the simulation of kinetic models range between 
those for microscopic and those for fluid dynamic models. We present a 
fast numerical scheme for kinetic models allowing the simulation of 
inhomogeneous traffic situations with reasonable computation times. 
Moreover, the coefficients for the fluid model are numerically evaluated for 
a special kinetic model. The resulting fluid equations are solved and the 
solutions are compared to those of the kinetic equation. 

The paper is organized in the following way: In Section 2 a general 
criticism of kinetic equations concerning their applicability for inhomog- 
eneous traffic flow situations is given. Section 3 contains an Enskog-type 
kinetic model avoiding the difficulties mentioned in Section 2. In Section 4 
a derivation of fluid dynamic equations is shown yielding an Enskog 
correction to standard fluid dynamic models. Finally, in Section 5 we 
describe a fast numerical scheme to solve the kinetic equation and present 
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numerical results for kinetic and fluid equations for the case of a highway 
with a reduction of lanes from three to two. 

2. CRITICISM OF STANDARD KINETIC EQUATIONS 
FOR VEHICULAR TRAFFIC 

The basic quantity in a kinetic modeling of vehicular traffic flow is the 
phase-space distribution function f ( x ,  v, t). It describes the number of 
vehicles at x and t with speed ve  [0, w], where w denotes the maximal 
speed of the vehicles. The evolution o f f  is given by a kinetic equation of 
the form 

f ,  + vf,.= C( f ) ( x ,  v, t) (1) 

with suitable initial and boundary values. C is an operator acting on the 
speed distribution function f and depending explicitly on the speed v, but 
on x and t only v ia f (x ,  v, t). For  a more detailed description of traffic flow 
on highways a multilane model describing each lane by its own distribution 
function f , ,  cc = 1 ..... NL (NL: number of lanes) is appropriate. However, for 
the sake of simplicity we restrict ourselves in this paper to a cumulative 
treatment of these distribution functions, i.e., f =  5-'.~= t f , .  Classical kinetic 
traffic flow theories follow this strategy as well. We mention some examples: 

Prigogine and Herman ~9) modeled the interactions between the cars by 
a slowing-down term and a relaxation term: 

C ( f )  = S ( f )  + R ( f )  

The slowing-down term 

S ( f ) ( x , v , t ) = ( 1 - P )  f ( x , v , t )  ( v ' - v )  f ( x , v ' , t ) d v '  

describes the breaking-down interactions of a vehicle and depends on the 
probability of overtaking P. This term is derived in a similar fashion to the 
usual derivation of the Boltzmann equation in rarefied gas dynamics. 
Usually, P was assumed to depend on the density 

f0 
r 

p(x, t) = f ( x ,  v, t) dv 

in a linear way, ~9) 

P(p) = 1 P 
Pm 
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where P,n denotes the maximal density. The introduction of a term like 
P(p) represents the above-mentioned cumulative treatment of the multilane 
effects. The relaxation term 

R( f ) (x ,  v, t )= 
f ( x ,  v, t ) - f o (X ,  v, t) 

T 

takes into account the acceleration of the vehicles to their desired speed. 
The desired speed distribution fo was assumed to be of the form 

fo(x, v, t )=p(x ,  t) Fo(v) 

where F o is a given function not depending on t. The relaxation time T for 
the acceleration interactions was also assumed to depend on p 

T(p) - p 
P ,,, - p 

Another widely used model is due to Paveri-Fontana, I ~  who intro- 
duced a distribution function depending also on the desired speeds of the 
drivers. The following argument is not changed by doing this. We mention 
here also the model in ref. 16. It will be used as a basis for the Enskog-type 
model which we will develop in Section 3. 

All these models have up to now mainly been used to simulate 
homogeneous traffic flow situations. Stationary distribution functions and 
fundamental diagrams, i.e., flux-density relations, have been computed. 
However, the influence of the streaming term has never been examined in 
detail. If the above equations are used for the description of inhomog- 
eneous traffic flow situations, a serious drawback appears due to the 
positivity of the velocities v: There is no mechanism in the equations to 
allow perturbations to propagate backward in the negative-x direction. 
This can be seen by the following trivial argument: Considering a full space 
problem, the integral form of the kinetic equation is 

f (x ,  v, t) = f ( x - -  vt, v, O) + f: C( f ) (x  + v( t' - t), v, t') dt' 

In particular, this shows that the distribution function at x and t depends 
only on the distribution function at the values x'~<x, t ' ~  t, since v is 
positive. A perturbation cannot propagate backward in the negative x 
direction. In particular, traffic jams occurring for dense traffic situations are 
not allowed to travel backward. This is in striking contrast to real traffic 
flow observations. The above type of kinetic equation is therefore only 
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applicable for dilute traffic flow without backward-propagating informa- 
tion. We remark that the situation for kinetic equations in gas dynamics, 
such as the Boltzmann equation, is completely different. There the argu- 
ment is obviously not true, since the velocity can assume positive and 
negative values. 

The above remark has consequences for the connection between 
kinetic and fluid dynamic traffic flow equations. Formally, the fluid 
dynamic equations can be derived from the kinetic ones by a moment 
procedure. However, all the derived fluid dynamic equations, such as, for 
example, the Lighthill-Witham, Payne, or other equations, are able to 
describe backward-propagating disturbances; see ref. 4 for the basic model. 
This means that one cannot expect to obtain a strict derivation of fluid 
dynamic equations from the above kinetic equations due to their com- 
pletely different behavior in the above-described situation. 

In general, to describe correctly the behavior of dense traffic with a 
kinetic equation and to obtain a consistent derivation of fluid dynamic 
equations, it is necessary to include the effects of the finite size extension of 
the vehicles. This can be done as shown in the next section in analogy to 
Enskog's theory for a dense gas. One obtains in this way a kinetic equation 
with the possibility of backward propagating disturbances. Here one 
should also mention ref. 8, where the finite size requirement of the vehicles 
was heuristically included in a macroscopic equation. 

3. ENSKOG-LIKE VEHICULAR TRAFFIC EQUATIONS 

In this section we describe an Enskog-type approach for kinetic 
vehicular traffic equations on the basis of the kinetic model developed in 
ref. 16. The procedure can obviously be adapted also for any other types 
of kinetic equations, such as the ones mentioned in the last section. 

3.1. Microscopic Model 

Our kinetic model is based on the following microscopic model. Con- 
sider a car 1 at place x t with the velocity v~ and its leading car 2 at x2 with 
velocity v2. Car 1 is assumed to change its velocity only in response to the 
leading car. If the vehicle is faster than the leading car and the headway to 
the leading car is becoming smaller than a certain threshold, its driver 
slows down or passes the leading vehicle. If the vehicle is slower than the 
leading car and the headway to the leading car is becoming larger than 
another threshold, the car accelerates. Actually several different thresholds 
for slowing down and acceleration procedures are known. One observes, 
for example, thresholds based on a certain desired distance or on a minimal 

822/87/1-2.7 
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acceptable distance between a driver and the leading vehicleJ -''2~ The 
thresholds in general depend on the velocity of the car and on the velocity 
of the leading vehicle. Let N be the number of thresholds under considera- 
tion. If car 1 is crossing a threshold i e { I ..... N}, i.e., if the headway 
h = x 2 - x ~  is becoming larger of smaller than a certain threshold 
h = H i ( v ~ , v 2 ) ,  then car 1 changes its velocity to the new velocity v. 
Velocities v~ and v2 are, for each threshold i, our of a certain range g2i of 
values. The new velocity is taken on instantaneously in accordance with a 
certain distribution function 

adv,  v , , v z ; p ) ,  (v,, v 2 ) e ~ i  

Since a i is a density function, it has to fulfill 

f j '  ai(v, vl,  v2; p) dv = 1 

The dependence of ai on the local density p allows us to include the 
cumulative consideration of the multilane effects in the model. Moreover, 
a~. may also be a function of location-dependent road condition parameters, 
e.g., the number of lanes; see the example in Section 5. 

A slowing-down maneuver could be given, e.g., by a function 
Hi(vl, v2)=h(v2), where h represents the minimal acceptable distance to a 
leading vehicle with speed v2. Since a car slows down only if its velocity is 
larger than that of the leading vehicle, s i is in this case given by {(v~, v2); 
v~ > v2}. In particular, one can recover the Prigogine slowing-down term 
by setting Hi = 0, ai equal to 

a~(v, vl,  v?.; p) = P(p)  cS(vl -- v) + ( 1 -- P(p) )  6(v2 - v) 

and (2~= {(vj, v2); vl > v2}. 

3.2. Kinet ic  Equat ion  

One can now derive by arguments similiar to the derivation of the 
Boltzmann equation in gas dynamics c2c221 a kinetic equation as follows: 
Let f ( x ,  v, t) denote as before the phase-space density. Writing down the 
equation for the change of the total number of vehicles leads as usual to 
the kinetic equation: 

f ,  + vZ,. = , , ~ , / .  - \ ~ , / ,  
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where t e [ 0 ,  ~ ) ,  x e [ 0 ,  L] ,  r e [ 0 ,  w], and (6f/St).~ and (Sf/6t)l are gain 
and loss terms due to discontinuous velocity changes, respectively. We can 
write them as 

,~=, \6t  ,).,,' i= ~ \6t  J~ 

where (~f/ t), and (Sf/6t)') describe the gain and loss terms, respectively, 
due to the ith threshold. We mention that for the numerical simulations in 
Section 5 we will restrict consideration to the case of two thresholds corre- 
sponding to acceleration and slowing-down interactions. The gain and loss 
terms are given respectively by 

( 6 f )  A~= I Iv , -v~[a i (v ,v ,  v~;p) 

x f2(x, DI, X "~- H i ( v , ,  v2), v2, t) dr, dr2 

/ i ~  I ( e ' r 2 ) ~ ' C ? ,  

Here f , (x ,  v t , x + d, v 2, t) denotes the pair distribution function of the cars 
and leading cars at x and x + d, respectively and 

p =p(x,  t) = f (x ,  v, t) dv 

To obtain from these equations a closed equation for f we have to express 
f2 b y f .  We mention here the work of Nelson, ~ ~5~ who introduced a correla- 
tion model for kinetic vehicular traffic equations using an assumption 
which he termed the "generalized vehicular chaos assumption." A modified 
vehicular chaos assumption can be stated as 

f2(x, v,, x + d, v2, t )= f (x ,  vt, t) f ( x  + d, v2, t) ~c(x, d, t) 

In addition, we assume that lc does not depend explicitly on x and t, but 
only via the local density. Then J~ has a form similar to Enskog's theory 
of a dense gas: 

f,_(x, v t , x  + d, v2, t ) = f ( x ,  vl, t) f ( x  + d, v,_, t) k(d, p(x, t) ) 

We mention that in Enskog's theory k depends on p(x+d/2).  In the 
revised Enskog theory it is a general functional of p( -, tl. See refs. 23-25 for 
details on Enskog equations. 



98 Klar and Wegener 

Defining 

C+(f)(x, v, t) 

= Ic Iv,- v2[ ai(v, v,, v2; p)k(Hi(vl, v2), p) 
I" h r 2 ) E ~ Q  i 

x f (x ,  vl, t) f ( x  + Hi(vj, v2), v~_, t) dv, dv 2 

-I~ t v - -v21k(Hi(v 'vz ) 'P) f (x 'v ' t ) f (x+Hi(v 'v2) ' v2 ' t )dv2  
r. r 2 1 6  fdi 

we obtain the Enskog-like equation 

N 

f~+  vf,.= Z C+(f)( x, v, t) (2) 
i = 1  

This equation will be the basis for all further investigations. Reconsidering 
the arguments in Section 2, one obtains here 

f ( x , v , t ) = f ( x - - v t ,  v,O)+fo ~ C ~ ( f ) ( x + v ( t ' - t ) , v , t ' ) d t '  
i = 1  

In this case one observes, due to the definition of C if, that the distribution 
function at x, t depends not only on the distribution function at x ' ~ x ,  
t' ~< t, but also on the distribution function at x' > x. This allows backward- 
propagating disturbances. In contrast to the gas dynamics case, we see that 
the Enskog character of the equation is essential even for the description of 
the most basic properties of the equation such as backward-propagating 
disturbances. 

4. M A C R O S C O P I C  EQUATIONS 

In this section we present a derivation of a fluid dynamic model with 
an Enskog correction term derived from the kinetic model in the last 
section. In particular, we obtain density-dependent coefficients for the 
macroscopic equations. We reconsider the kinetic model in Section 3. For 
the sake of a simple notation we assume from now on that the sets -(2 i are 
disjoint with 

N 

U = [o, w] 2 (3) 
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Then one can define 

o'(v, Vl, v2; p) = o'i(u, Vl, v2; p) 

for (vl, Vz)e~i .  With 

we obtain the equation 

and 

N 

c+=Z c? 
i = 1  

f ,  + vf,. = C+(f ) (x ,  v, t) 

where C + is given by 

C+(f ) (x ,  v, t) 

H(vl ,  V2)= Hi(vt ,  v2) 

(4) 

=Ito. ,,q-" I v ~ - v 2 l a ( v , v , , v z ; p ) k ( H ( v , , v 2 ) , p )  

x f ( x ,  v,, t) f ( x  + H(v I , v2), v2, t) dvt dv2 

If' - Iv--v2lk(H(v,  v 2 ) , p ) f ( x , v , t ) f ( x + H ( v ,  Vz),vE, t) dv,_ 

As a first step in the derivation of macroscopic equations we have, as usual 
in kinetic theory, to investigate the homogeneous kinetic equation. 

4.1. Equilibrium (Homogeneous, Stationary Case) 

The homogeneous equation for f = f ( v ,  t) is 

.f, = C(f)(v,  t) 

with 

C ( f ) ( v , t ) =  f Iv,-v21~r(v, v t , v2 ;p )k (H(v , , v2 ) , p ) )  
[0, w] 2 

x f ( v , ,  t) f(v2,  t) do, dv2 

Io" - I v -  v2l k(H(v, v,), p) f (v ,  t) f ( v  2, t) dv 2 

For this kinetic equation p = I;' f (v ,  t) dv is constant in space and time. 

(51 
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For the following arguments the homogeneous equation must have a 
one-parameter family of stationary distributions f,,(p, v) depending only on 
the density, i.e., for p fixed we have 

f(v,  t)--* J~,(p, v) for t ~  oo 

no matter what the initial distribution of the homogeneous equation is. For 
example, for the special kinetic model in Section 5 this is numerically 
verified in ref. 16. 

Depending on the family of stationary distributions, one defines the 
following equilibrium quantities: The mean velocity 

the traffic pressure 

I vf,.(p, v) dv 
u,.(p) P 

p~.(p) = (v - u~.(p)) 2 f , . (p ,  v) dv 

the Enskog or anticipation coefficient 

a,.(p) = v, -- va(v, v,, v,_; p) dv 
[0, ,v] 2 

(6) 

(7) 

x H(v,,  v~_) Iv ,  - v~_l k(H(v, ,  v~_), p) f,.(p, vl) O,,f,.(p, v2) dv 2 dr, (8) 

and the interaction frequency 

ire Iv~-v ,_]k(g(v , ,v2) ,p) f , . (p ,v , ) f~ . (p ,  v2) dvtdv,  (9) 
v,.(p) = p o. ,,']-' 

The last expression has to be corrected with a suitable term if passing is 
included; see Section 5. 

4.2. Ba lance  Equat ions  

We start the derivation of fluid dynamic equations by multiplying the 
inhomogeneous kinetic equation (4) with the property ~b(v) and integrating 
it with respect to v. One obtains the following set of balance equations: 

O, r  dv+O.,, vCf dv = r C+(f)(x ,  v, t)dv 
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We define the density n4, of the property ~b as 

n 4, = Ii" ekf dv 

The important point in deriving fluid dynamic equations from kinetic 
Enskog equations is to identify clearly the flux and the source terms in the 
equation. The flux of ~ due to the kinetic advection part is as usual 

~0 r q,t = vckf dv 

However, there is a second contribution to the flux coming from the 
Enskog collision term due to the finite size of the interaction thresholds. To 
obtain this flux we separate the Enskog interaction term into the inter- 
action term of the homogeneous equation and the deviation from the 
homogeneous term: 

C + = C - ( C - C  + ) 

We mention that we do not proceed here exactly as in Enskog's theory of 
a dense gas. The fact that the velocities are only positive requires a slightly 
different treatment. Rewriting the balance equations, we get then 

O,n,~ + O,.q4, + E+ = S,~ 

with Enskog flux term 

~ r E 4, = r  v, t ) -  C + ( f ) ( x ,  v, t)] dv 

and source term 

S 4, = r C ( f ) ( x ,  v, t) dv 

Using ~b(v)= 1 and ~b(v)=v, one obtains equations for the traffic flow 
density 

_ p _  ~'" n, fdv  
- -  - -~0  
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and the traffic flux 
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fO 
r '  

n,, = pu = vf  dv 

u=ndn~ denotes the mean velocity. Since S~--0 and El =0 ,  we get for 
r = 1 the continuity equation 

O,p + O.,.(pu) = 0 

Moreover, for r  v the acceleration equation 

O,(pu) + O.,.(p + pu 2) + E = S 

is obtained with 

P=fo" 

E = E , = f I '  

and 

(v -u) ' -  f dv 

v[ C(f ) (x ,  v, t ) -  C+( f ) (x ,  v, t)] dv 

S = S,, = e'jo" vC(f)(x ,  v, t) dv 

To obtain closed equations for p and u one has to specify the dependence 
of p, S, and E on p and u. 

4.3. C losure  Re la t ions  

There are a variety of possible closure relations which could be 
borrowed from gas dynamics. We restrict ourselves here to the derivation 
of nonviscous fluid dynamic equations. As usual, to find closure relations 
for the balance equations one has to use the stationary solutions of the 
homogeneous kinetic equation (5). All parameters of the fluid dynamic 
equation can be identified from these solutions. In the following f~(p, v) is 
the local equilibrium distribution associated to the local density p = p(x, t). 

We set 

fOt' f'O v p =  ( v - u ) 2  f dv~  (v-u, . (p))2 f , . (p ,v)dv=p, . (p)  
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with Pe defined in (7). The Enskog term 

If' E =  v[ C ( f ) ( x ,  v, t ) -  C + ( f ) ( x ,  v, t)] dv 

= v l - -  ve(v, v l , v 2 ; p )  dv Ivl - v21 k(H(v , ,  v2), p) 
[0, w] 2 

x [f(x,  v,,  t) f ( x + H ( v , ,  vz), v2, t ) - f ( x ,  v,,  t) f ( x ,  v2, t)] dv2dv , 

is approximated in the following way: 
We linearize and substitute the stationary distributions fe for f .  Using 

the definition of ae(p) in (8), this yields 

x H(v , ,  vz) Iv, - v 2 l  k (H(v  I , vz), p) f,.(p, v,)  Opfe( p, v2) O.,.p dv2 dv, 

= ae(p) O,.p 

The source term is treated as, for example, in semiconductor theory (see, 
e.g., ref. 26) by using a relaxation-time approximation: 

)" f - f " dv PU-  Pue(P) 
s ~ - I o  =  e(p) 

with 

1 
T~'(P)=ve(p ) 

where v,, and u,, are defined in (9) and (6), respectively. All together this 
yields fluid dynamic equations of the form 

O,p + O.,.(pu) = 0 

O,(pu) + O,.(p,.(p ) + pu 2) + a~.(p ) O.,.p 
pu~(p)-  pu 

Te(p) 

where the quantities p,.(p), ae(p), ue(p), and Te(p) are determined from the 
stationary solution of the homogeneous kinetic equations. The obtained 
equation looks formally similar to Payne's equation. 15) However, we have 
obtained in the above way coefficients that are derived from microscopic 
considerations, not only constants that are fitted to measured data. 



104 Klar and Wegener 

Remark  1. We remark that the term ae(p)O,.p is not due to the 
usual kinetic pressure term, but only to the Enskog correction. The 
influence of the kinetic pressure is given by p,,. 

Remark 2. Obviously the procedure can be extended without dif- 
ficulties to get, for example, a third equation for the variance. See ref. 8 for 
such an equation. For  the derivation of equations with viscous terms as in 
ref. 6 a more complicated treatment is required. 

5. N U M E R I C A L  R E S U L T S  

In this section we present a numerical solution of the kinetic equation 
for a special model in a space-inhomogeneous situation. Moreover, we 
evaluate explicitly the coefficients derived in the last section from the 
homogeneous kinetic equation. The macroscopic equations with these coef- 
ficients are solved and the results are compared to the kinetic solution. 

5.1. Kinet ic  M o d e l  

Before describing the discretization scheme for the kinetic equation we 
state briefly the explicit example for the kinetic model that we use for 
the simulation (see ref. 16 for more details). Consider Eq. (2) with two 
thresholds ( N =  2), one for slowing-down and one for acceleration interac- 
tions. The slowing-down threshold is given by a headway 

H,(vl, v2)=h  

where h is a positive constant. For  slowing down f2~ is given by 

~ ,  = { (v , ,  v2) e [0,  w]2; v, > v2} 

The slowing-down term is modeled by a Prigogine-like term. However, we 
do not restrict the slowing down to the actual speed of the leading vehicle 
as in the Prigogine work, but to a range of speeds smaller than this one. 
We allow slowing down of car 1 to a velocity ve  [fly2, v2], where fl is some 
positive constant smaller than 1. In this range a uniform distribution of 
velocities is assumed due to the lack of more precise knowledge. 

If the following car is faster than the leading one, we have, alter- 
natively to slowing down, also to take into account the possibility of 
passing with a certain probability P analogous to the Prigogine model in 
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Section 2. We assume the velocity of the passing car to remain the same as 
before. This gives 

a,(v, vl, v2, p )= P6(v I - v )  + (1 - P )  - -  
1 

vz( 1 - fl) Z{/~,,2. ,,2~(v) 

where 6 denotes the delta function and Z{u. b] is the characteristic function 
of the interval [a, b]. 

The probability of passing P depends on p(x, t) like 

P P = I - - -  
jot)) 

where p,,, denotes the maximal density, which is given by the number of 
lanes. This is the same dependence as in the Prigogine model, p,,, is a 
location-dependent road condition parameter. 

The acceleration threshold is assumed to be given by the same constant 

H2(vl, v2) =h 

For a more consistent microscopic model one would have to choose this 
constant larger than the constant of the slowing-down threshold. However, 
for the kinetic model the limit case of equal constants does not yield any 
problems. For  acceleration f2 2 is given by 

~ , =  {(v,,  v_,)e [0, w]-'; v, <v,_} 

We assume that car 1 accelerates from its actual speed v~ to a certain range 
of speeds between v~ and v i +  0~(w-v~). Moreover, we assume again, due 
to the lack of more precise knowledge, that the velocity after acceleration 
is uniformly distributed in the range [v~, v~ +0~(W-Vl)]. This leads to the 
distribution function 

a2(v, v,, v ~ ; p ) = - -  
1 

~(w - v~) ZE,,,.,,, +.(,,,-v, )j(v) 

Since for dense traffic the possibility of acceleration is more restricted than 
for traffic flow with a low density, 0~ is supposed to depend on the density 
p(x, t) in the following way: 
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where ao ~< 1 is some positive constant. Note that this model fulfills condi- 
tion (3). Using the notation at the beginning of Section 4, one can define 
a by a~ and a2. Since a completely satisfying correlation model is not 
available, we assume for the simulation that k(h ,  p)  is equal to I. 

This model is now numerically investigated. 
We treat the kinetic equation by a discretization scheme as follows: 

A simple standard discretization of the equation in velocity space needs a 
large number of discretization points in order to describe correctly the 
influence of the singularities appearing at v = 0  and v = w. Therefore we 
divide the velocity space into a certain number of cells and calculate the 
transition rates between the cells given by the above kinetic equation. 
Setting w = 1, we introduce gridpoints 

L j +  1/2 
x i = i A x ,  i = 0  ..... M, A x =  M ,  v / - ~ ,  j = 0  ..... N - 1  

and the values f ,  z i = f ( x i ,  v i ,  t). The discretized Enskog equation is then 
given by 

a,f,,;+ ~ L , - f ' - ' , +  
�9 + A x  

1 N - - I  l N - - I  

- , - ~ r f , , . /  . -  f i . k  =~_ E a,.j. , . ,Iv~-v,ls E Iv: v~l -" 
k , l = O  k = O  

with 

f ,".j = (1 - ~) f,+,.: + ~f,+,+ ,./ 

where 

and 

J = max i: i < , cx A x  

- = N 3 f l i + L k + l ' / + l ~ / N a ( v ,  v l , v ~ ; p i )  d v d v n d v  ~ 
13r i, j ,  k .  I a ( j ,  k ,  I ) / N  - - 

where • i . j .  k ,  I is evaluated analytically. The density used to compute a is 
calculated by 

1 N - - !  

) =  
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The time derivative is treated in a standard way. This means that we imple- 
ment a discrete-velocity approximation of the kinetic equation using the 
discrete transition rates 6i, j. k. ~ which are averaged values for each cell. The 
most important fact about this discretization is that the discrete version of 
the continuity equation is automatically fulfilled, since 

1 N- - !  

~=o #i.j,~,t= l 
The scheme needs only a very low number--approximately ten cells--in 
velocity space to yield resonable results. 

5.2. Fluid Dynamic Model 

The fluid dynamic equation is solved with a splitting algorithm treat- 
ing the flux and the relaxation part in separate steps. The flux part, as 
usual, is written in conservative form and then treated by a conservative 
scheme. We have simply chosen the Lax-Friedrichs algorithm. 

To obtain the coefficients for the fluid dynamic equations we have to 
compute the stationary distributions of the homogeneous kinetic equation 
(5). In the present case the interaction frequency leading to a relaxation 
to the stationary distribution must be corrected, as already mentioned in 
Section 4, due to the inclusion of the possibility of passing. We get 

v~.(p) = ~  f[o.,,.]2 Ivj --021 k(H(vz, 02), p)f,,(p, vl) f,,(p, v2)dr1 dr2 

P(P) 
( Iv~ -- v21 k(H(vl ,  v2), p) f~(p, v~ ) f~(p, v2) dvl dvz 

P an1 

To solve the homogeneous equation, we use a scheme similar to the one 
described in ref. 16. To obtain a high accuracy for the coefficients, an 
adaptive discretization of the velocity space is introduced additionally. 
The parameters in the kinetic model are chosen as %=0.3 and fl=0.3. 
Figures 1-4 show plots of the quantities u,,(p), p,,(p), v,,(p), and ae(p). The 
plot of the mean velocity fits quantitatively to measured data reported in 
ref. 27. At this point one should mention that the obtained coefficients 
depend on the microscopic model via the kinetic equation. They cannot be 
supposed to be the correct ones for any traffic flow situation. 

5.3. An Inhomogeneous Traffic Flow Situation 

In the following series of figures an inhomogeneous traffic flow situa- 
tion is shown. We consider a highway with a reduction of the number of 
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Fig. 1. Mean velocity. 

lanes from three to two after two-thirds along the highway under con- 
sideration. The example is calculated with the kinetic equation and the 
derived fluid dynamic equations with the coefficients computed above. 
The reduction of the lanes is simply achieved by changing the maximal 
density p,,,. 

The units in the following calculations are given by setting the maxi- 
mal velocity w equal to 1 and the bumper-to-bumper distance h o equal 
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Fig. 2. Traffic pressure. 
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Fig. 3. Interaction frequency. 

to 1. This yields the time unit to be equal to the bumper-to-bumper dis- 
tance divided by the maximal velocity, and the maximal density p,,, equal 
to the number of lanes under consideration. The length L of the highway 
under consideration is equal to i000. The space and time discretizations are 
A x =  1 and z l t=0 .5  for the kinetic equation and A x = 0 . 5  and z / t=0.125 
for the fluid dynamic equation. For the kinetic equation the number of 
points for the velocity discretization is chosen as N =  40 and the threshold 
value as h = 5. 
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Fig. 4. Anticipation coefficient. 
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F(x.v} 

3 
2 

t o 0 0  

V/'W - " "  () 'g ~ 0  - - -  

Fig. 5. Space-speed distribution for t =  1000. 

We start with an "empty" highway and prescribe the incoming dis- 
tribution function for the kinetic equation. A constant number of incoming 
vehicles is used. The solution of the kinetic equation, i.e., the space-speed 
distribution of the vehicles, is shown for different times in Figs. 5-7. 
Starting with an empty highway, one observes in Fig. 5 free flow of the 
vehicles until the stretch is completely filled with vehicles. The overall den- 
sity is small compared to the maximal density, such that there is no 
influence of the bottleneck. When the stretch finally is filled with vehicles, 
the speed distribution drops at the bottleneck, reflecting the formation of 
a traffic jam, as seen in Fig. 6. Two modes of the distribution function 
appear at the beginning of the bottleneck. In Fig. 7 the jam is running 

F{x.v) 

3 

O ) 
F -- 
! luoo 

o.~ ~ I Z . .  '~176 "~'-') 

0 

Fig. 6. Space-speed distribution for t=2000.  
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Fig. 7. Space-speed distribution for t =8000. 

backward. In the bottleneck itself the speed distribution is recreated, 
showing normal traffic flow with lower density. 

Figures 8 and 9 show the time development of the density of  vehicles 
for the fluid dynamic and kinetic equations. 

We mention that, as expected, both equations show very similar 
behavior. However,  in the kinetic simulation the shocks are smeared out 
much more than in the fluid dynamic one. This is similar to the situation 
in the kinetic theory of  gases. 

Fig. 8. 
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Time development of the density for the kinetic equation at t = 2000, 4000, 6000, 
8000, 10,000. 

Finally, Fig. 10 shows the influence of the Enskog factor. The density 
of the kinetic solution with h = 0  (no Enskog correction) is plotted at 
time t = 2300. The case h = 5 is shown for comparison. In particular, one 
observes the explosion of the solution of the kinetic equations without 
the Enskog correction shortly after the time t = 2300, and no backward- 
running traffic jam is observed. This is in accordance with the considera- 
tions in Section 2. 
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